Minggu, 18 April 2010

Tugas 4B

Pembuktian Hukum Aljabar Boolean

T1. Hukum Komutatif

(b) (A+B) (A+B’) =A

(a) A + B = B + A

A

B

A + B

B + A

0

0

0

0

0

1

1

1

1

0

1

1

1

1

1

1

(b) A B = B A

A

B

AB

BA

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1

T2. Hukum Asosiatif

(a) (A + B) + C = A + (B + C)

A

B

C

A + B

B + C

(A+B)+C

A+(B+C)

0

0

0

0

0

0

0

0

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

1

1

1

1

1

1

0

0

1

0

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

(b) (A B) C = A (B C)

A

B

C

AB

BC

(AB)C

A(BC)

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

1

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

1

0

1

0

0

0

1

1

1

1

1

1

1

T3. Hukum Distributif

(a) A (B + C) = A B + A C

A

B

C

B +C

AB

AC

A(B+C)

(AB)+(AC)

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

1

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

1

1

0

1

1

1

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

1

(b) A + (B C) = (A + B) (A + C)

A

B

C

BC

A+B

A+C

A+(BC)

(A+B)(A+C)

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

T4. Hukum Identity

(a) A + A = A

A

A

A+A

0

1

0

1

0

1

(b) A A = A

A

A

A A

0

1

0

1

0

1

T5.

(a) AB + AB’ = A

A

B

B’

AB

AB’

AB+AB’

0

0

1

1

0

1

0

1

1

0

1

0

0

0

0

1

0

0

1

0

0

0

1

1

(b) (A+B) (A+B')= A

A

B

B’

A+B

A+B’

(A+B)(A+B’)

0

0

1

1

0

1

0

1

1

0

1

0

0

1

1

1

1

0

1

1

0

0

1

1

T6. Hukum Redudansi

(a)A + A B = A

A

B

AB

A+AB

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1


(b) A (A + B) = A

A

B

A+B

A(A+B)

0

0

1

1

0

1

0

1

0

1

1

1

0

0

1

1

T7

(a) 0 + A = A

0

A

0+A

0

0

0

1

0

1


(b) 0 A = 0

0

A

0 A

0

0

0

1

0

0

T8

(a) 1 + A = 1

1

A

1+A

1

1

0

1

1

1


(b) 1 A = A

1

A

1 A

1

1

0

1

0

1

T9

(a)A’ + A = I

A

A’

I

A’+A

0

1

1

0

1

1

1

1


(b)
A’ A = 0

A

A’

0

AA’

0

1

1

0

0

0

0

0

T10

(a ) A+ A’B = A+B

A

B

A’

A’B

A+B

A+A’B

0

0

1

1

0

1

0

1

1

1

0

0

0

1

0

0

0

1

1

1

0

1

1

1


(b)
A (A’+B) = A B

A

B

A’

A’+B

AB

A(A’+B)

0

0

1

1

0

1

0

1

1

1

0

0

1

1

0

1

0

0

0

1

0

0

0

1

T11. TheoremaDe Morgan's

(a) (A’+B’)= A’B

A

B

A’

B’

A+B

(A’+B’)

A’ B’

0

0

1

1

0

1

1

0

1

1

0

1

0

0

1

0

0

1

1

0

0

1

1

0

0

1

0

0

(b) (A’B’) = A’ + B’

A

B

A’

B’

A B

(A’B’)

A’+B’

0

0

1

1

0

1

1

0

1

1

0

0

1

1

1

0

0

1

0

1

1

1

1

0

0

1

0

0